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ASYMPTOTIC FREEDOM IN THE DIFFUSIVE REGIME OF

NEUTRON TRANSPORT

BRITTON CHANG ∗

Abstract. The accuracy of a numerical method for solving the neutron transport
equation is limited by the smallest mean free path in the problem. Since problems
in the asymptotic diffusive regimes have vanishingly small mean free paths, it seems
hopeless, given a limited amount of computer memory, that an accurate solution can
be obtained for these problems. However we found that the accuracy of a numerical
method improves as the scattering ratio increases with the total cross section and
the grid spacing held fixed for problems that are in the asymptotic diffusive regime.
This phenonmenon is independent of the numerical method and can be explained on
physical grounds. The numerical results by the Diamond Difference Method are given
to show this phenomenon.

1. Introduction. In order to achieve a desired degree of accuracy in the numer-
ical solution of the neutron transport equation, a zone’s diameter is usually limited
to a part of a mean free path. While this limitation on the zone’s diameter is alle-
viated by higher order methods, it is however not eliminated. Since the mean free
path is vanishingly small in the asymptotic diffusive regime, one is daunted by the
computer memory needed to calculate an asymptotic diffusive neutron problem ac-
curately. However, we found an interesting phenomenon in the asymptotic diffusive
regime. With the mean free path and the grid spacing held fixed, we found that the
accuracy improves as the scattering ratio approaches 1. The phenonmenon is physical
and is independent of the discretization method. The purpose of this note is to report
and to explain this phenomenon.

The phenomenon of improved accuracy in the asymptotic diffusive regime, is
exhibited by the mono-energy transport equation in the 1-D spherical coordinate
system [1] with an isotropic source q0(r),
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µ

r2
∂r2

∂r
+

1

r

∂(1 − µ2)

∂µ
+ σt(r)

)

ψ(r, µ) =
σ0(r)
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∫ 1

−1

ψ(r, µ′) dµ′.

+
q0(r)

2
, 0 < r < 1, µ ∈ [−1, 1] ,(1.1)

and Dirichlet boundary condition

ψ(r, µ) = ψb(µ), r = 1, µ ∈ [−1, 0).

The integral on the right hand side (rhs) of (1.1) is called the scalar flux,

φ(r) ≡

∫ 1

−1

ψ(r, µ′) dµ′,

and it plays a central role in asymptotic transport theory [2].
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In the asymptotic diffusive regime [2], the total cross section σt is enormously large
∼ 1/ε, and the scattering cross section σ0, bounded by σt such that the difference of
these two cross sections, the absorption cross section, σa ≡ σt−σ0 is vanishingly small,
∼ ε. Since the mean free path λ is defined as the inverse of the total cross section,
the asymptotic diffusive regime is the regime of small mean paths O(ε). Accurate
numerical results for asymptotic diffusive problems appear hopelessly confined to grid
spacings of order ε. However as we shall show, the angular flux ψ is a slowly varying
function of its coordinates, r and µ and can be approximated accurately on grids with
spacings much larger than the mean free path 1/σt.

When transport is dominated by isotropic scattering, as in the asymptotic diffu-
sive regime, the angular flux, ψ, varies slowly with µ, and thus is well approximated
by an expansion in Legendre polynomials. In fact, a two term expansion is sufficient,
i.e.

ψ(r, µ) ≈
1

2
φ(r) +

3

2
µJ(r).(1.2)

The diffusion approximation of (1.1) is derived by the substitution of (1.2) into
(1.1) and taking moments of the result. Multiplying the result by P0(µ) = 1, and
then by P1(µ) = µ, followed by integration with respect to µ, give respectively

1

r2
∂r2J

∂r
+ σaφ = q0 ,(1.3)

and

1

3r2
∂r2φ

∂r
−

2φ

3r
+ σtJ = 0 .(1.4)

Solving (1.4) for J and substituting the result into (1.3) gives

−
1

3r2
∂

∂r

(

r2

σt

∂φ

∂r

)

+ σaφ = q0.(1.5)

Furthermore, at the boundary, r = 1, we append Marshak’s boundary condition,

φ

4
−

1

6σt

∂φ

∂r
= −

∫ 0

−1

µψb(µ) dµ ,(1.6)

and at the origin we impose the Neumann condition,

∂φ

∂r

∣

∣

∣

∣

r=0

= 0.(1.7)

Since the angular flux ψ, the solution of the the transport equation (1.1), is well
approximated by solution of the diffusion equation (1.5) in the asymptotic diffusive
regime [2], then we can deduce the spatial variation of ψ in this regime from the
spatial variation of the solution of diffusion equation (1.5). For the sake of argument,
let us assume that parameters of the diffusion equation (1.5) are the constants, i.e.
σt = 1/ε, σa = ε, and q0 = ε. Except for a boundary layer at r = 1, the constant
function φ ≈ 1 satisfies (1.5) in the region, r < (1− ε), for these parameters. Thus the
spatial variation of ψ is independent of the mean free path (∼ 1/σt) in the asymptotic
diffusive regime. Since the angular flux ψ is smooth in the asymptotic regime, then
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Fig. 2.1. Results of the first test problem, the transport in a void that is surrounded by a strong

absorber. The solid curve is the exact solution, and the points are the numerical solution.

an accurate numerical solution should be attainable with a grid spacing that is much
larger than the mean free path.

The accuracy of a numerical method depends on how well it captures the varia-
tions in the solution. A rapidly varying function is approximated poorly on the grid
that a slowly varying function is approximated accurately. Now, if we hold the total
cross section fixed and increase the scattering cross section, then ψ should become
smoother as the scattering cross section increases. Therefore the error in the nu-
merical solution should decrease as the scattering ratio increases for transport in the
asymptotic diffusion regime.

2. Numerical Results. We verify these qualitative arguments with two test
problems. The test problems consist of a void in the region r ∈ [0, .4), and a dense
material with σt = 100 in the region r ∈ [.4, 1]. The isotropic external source q is
1 in the void region, and is 0 in the absorbing region. In the first test problem, the
dense material is a pure absorber with a scattering ratio σ0/σt = 0, and in the second
test problem, the dense material is a pure scatterer with a scattering ratio of 1. The
transport equation (1.1) was solved by the Diamond Difference Method (DD) [1].
The µ integral of (1.1) is approximated by a Gauss-Legendre quadrature in the DD
method. The two test problems, calculated with ∆r = .1 and a 10 point quadrature
set, are compared to the ’exact’ solutions in Figs. 2.1 and 2.2 respectively.

For these parameters, we found the DD scheme converges when ∆r, the grid
spacing, is .001 and the quadrature is a 10 point set. These converged results are
taken to be the ’exact’ solutions.

The results of the first test problem, shown in Fig. 2.1, illustrate the magnitude
of discretization error for the transport in a void that is surrounded by a strong
aborber. The exact solution, depicted as the solid line in Fig. 2.1, varies rapidly in
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Fig. 2.2. Results of the second test problem, the transport in a void that is surrounded by a

pure scatterer. The solid curve is the exact solution, and the points are the numerical solution. Note

that the numerical solution is positive and is non-oscillatory.

the absorbing region. As expected, the scalar flux φ is poorly approximated on such
a coarse grid, σt∆r = 10, with errors manifesting as oscillations in the absorbing
region. The negative values of φ in the absorbing region are unphysical. On the
other hand, the results of the second test problem, shown in Fig. 2.2, illustrate the
magnitude of the discretization error for the transport in a void that is surrounded
by a pure scatterer. The exact solution, as we have argued in the preceeding section,
varies slowly in the diffusive region. Thus it is approximated reasonably well by the
numerical solution for a grid spacing of 10 mean free paths. Furthermore, we note
that the computed scalar flux φ is positive everywhere, in contrast to the situation
which is depicted Fig. 2.1.

Let us now show that the accuracy of a numerical scheme improves as the scat-
tering ratio increases with the grid spacing and the quadrature set held fixed. Since
the quadrature set is converged, the error in numerical solution, ψh

i,d, is due to spatial
zoning, and can be taken as the spatial discretization error in its zeroth moment,
φh

i ≡
∑nr

d=1
ψh

i,d wd. In the figures below, we plot the L2 error of φh − φ, where the
L2 norm of u is defined as

‖u‖2
2 ≡

(∑nr

i=1
u2

i Vi
∑nr

i=1
Vi

)

1

2

,

with, Vi = (4/3)π
(

r3
i+ 1

2

− r3
i− 1

2

)

, being the volume of zone i. The graph in Fig. 2.3

shows that the accuracy of unconverged results (calculated with ∆r = .1 ) improves
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Fig. 2.3. The relative error decreases as the scattering ratio increases.

as the scattering ratio increases in the asymptotic diffusive regime. This phenomenon
persists as ∆r decreases. When we decrease ∆r to .01, we see that the relative error
in Fig. 2.4 also decreases as the scattering ratio increases. The relative error in Fig.
2.4 is smaller than the relative error in Fig. 2.3 because the results of Fig. 2.4 were
calculated with a smaller ∆r than the results of Fig. 2.3.

3. Conclusions. We have shown that the accuracy of a numerical scheme for
solving the neutron transport equation in the asymptotic diffusive regime improves as
the scattering ratio increases for a fixed total cross section. For problems with hope-
lessly small mean free paths, this work offers a glimmer of hope that the calculations
may not be as inaccurate as one might think if the scattering ratio is very close to 1.

REFERENCES

[1] E. E. LEWIS AND W. F. MILLER, Computational Methods of Neutron Transport, John
Wiley, New York, 1984.

[2] E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small

mean free paths, J. Math. Phys., 15 (1974), pp. 75-81.

5



0.9 0.92 0.94 0.96 0.98 1
0

1

2

3

4

5

6

7

8
x 10

−3

 σ
0
 / σ

t

|| 
φ 

− 
φh  ||

2   
 / 

  |
| φ

 ||
2 

σ
t
=100,  ∆ r = .01

Fig. 2.4. These results are similar to those of Fig. 2.3 but were calculated with ∆r = .01.

6


